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Abstract. We have investigated theoretically the asymmetrical photoionization yields into the 6s1/2, 5d3/2

and 5d5/2 continuum channels of atomic barium observed by Wang, Chen and Elliott [Phys. Rev. Lett.
77, 2416 (1996)] in the study of coherent control through two-color resonant interfering paths. The atomic
parameters obtained from a theoretical approach based on a combination of jj-coupled eigenchannel R-
matrix and Multichannel Quantum Defect Theory are used to analyze the photoionization spectra from
the 6s6p 1P1 and 6s7p 1P1 states with polarized light beams. The studied energy range includes the
6p7p autoionizing resonances. The dynamics of the two-color photoionization is governed by the coherent
excitation of the 6s6p and 6s7p 1P1 intermediate states. This excitation is described as an adiabatic
process in the rotating wave approximation. The influence of the radiative decay, spatial distribution of
the intensities of the laser beams and hyperfine interaction is discussed.

PACS. 32.80.Fb Photoionization of atoms and ions – 32.80.Qk Coherent control of atomic interactions
with photons – 31.15.Ar Ab initio calculations

1 Introduction

Controlling branching ratios of various photofragmenta-
tion products by exploiting interference between different
excitation channels coupling the same indistinguishable
initial and final states by laser beams has generated a great
deal of interest in the past few years. Brumer, Shapiro
and coworkers were the first to suggest to control molecu-
lar dissociation by manipulating quantum interference be-
tween two or more optical excitation pathways [1–4] and
then numerous theoretical and experimental studies were
performed in various molecular and atomic systems. For
references the reader may consult the review papers by
Brumer and Shapiro [5] and Shapiro and Brumer [6] and
references therein. Most of the proposed control scenar-
ios have relied upon the use of laser beams whose rela-
tive phase is well defined and controllable. The atomic or
molecular dynamics may be altered by varying the relative
phases and/or intensities of the light beams.

It is also possible to control photoionization processes
through interference phenomena without imposing a well
defined phase relationship between the fields. A way to
control the products of photodissociation by irradiating a
molecule with two intense lasers whose relative phase need
not to be well defined has been proposed by Chen et al.
[7,8]. Control results from quantum interference between
two non-linear pathways induced by the intense fields.

a e-mail: Eliane.Luc@lac.u-psud.fr

This process bears some relationship with laser-induced
continuum structure [9]. Control over the branching ra-
tios in the photodissociation of Na2 [10] and in ionization
of the xenon atom [11] based on this scheme has been
recently demonstrated. Selectivity between the dissocia-
tion channels is achieved by varying the intensities and
frequencies of the two intense laser fields used to irradiate
the system.

Another type of control of ionization line shapes, which
is also insensitive to the laser phases, has been used in
NO by Pratt [12]. The investigated interference scheme
is a special case of the control scheme proposed by Chen
et al. [3,4]. By using two different resonant, two-photon,
two-color ionizing processes, Pratt observed asymmetrical
ionization line shapes when varying the detuning of the
resonant two-photon transitions and suggested that this
technique could be extended to control photoionization
products.

Recently, Wang et al. [13–15] using Pratt’s scheme
investigated the feasibilility of controlling the branching
ratios for photoionization into three different ionization
channels of atomic barium characterized by the kinetic
energy of the photoelectrons. The two-photon processes
employed in that experiment are shown in Figure 1. The
atom absorbs one laser beam of frequency ω1 (554 nm),
polarization ε1 and intensity I1 and a second one of fre-
quency ω2 (307 nm), polarization ε2 and intensity I2 for
both ionization routes. There exist two coherent inter-
fering pathways, resonantly enhanced by either the 6s6p
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Fig. 1. Schematic energy level diagram showing the two two-
photon two-color ionizing pathways and the relevant final ionic
states. The photoelectrons with energy 0.52 eV observed in [13]
result from the indirect process involving the significant radia-
tive decay 6s7p→ 6s7s.

or 6s7p 1P1 level, coupling the 6s2 ground state with
energyE0, chosen asE0 = 0, to the same continuum states
with energy Er = E0 + ~ω1 + ~ω2 ≈ 50 607 cm−1 located
above the Ba+ 5d5/2 threshold. Wang et al. [13–15] have
performed photoelectron time-of-flight measurements to
determine the branching ratios for population in the 6sε`,
5d3/2ε` and 5d5/2ε` continuum channels. For certain fixed
detunings ∆2 of the UV laser, they recorded photoioniza-
tion spectra as function of the detuning ∆1 of the visible
laser; they found very asymmetrical line shapes and varia-
tions of the branching ratios into the different continuum
channels. They have attributed these asymmetries to in-
terference effects between the two pathways and have sys-
tematically studied the dependence of the profiles on the
atomic beam density, detunings, laser powers and relative
polarizations of the two laser fields, whose linear polariza-
tions are either parallel or perpendicular.

To explain the unusual line shapes recorded by Wang
et al. [13], Nakajima et al. [16] presented a general for-
mulation for describing the dynamics of the system and
specific results using atomic quantities calculated in the
calcium atom. Their method is based on the study, within
the rotating wave approximation (RWA) [17], of the time
evolution of the matrix elements of the density opera-
tor built on the 4s2 ground state and on the two 4s4p
and 4s6p 1P1 intermediate states. The remaining atomic
states are eliminated and appear through atomic param-
eters. As the laser intensities are increased, these authors
found asymmetrical features in the 3d ion yield similar to
those observed in barium by Wang and interpreted them
as resulting from the AC Stark shifts of the 4s2 and 4s4p
states, and from the large ionization rate of the 4s6p state
into the Ca+ 3d ionic state.

The purpose of the present paper is to report a quan-
titative analysis of the experimental data reported by
Wang et al. [13–15] using atomic parameters calculated for

barium. Our dynamical treatment includes the 6s2 ground
state and the 6s6p and 6s7p 1P1 intermediate states. The
evaluation of the atomic parameters uses the new method
based on the eigenchannel R-matrix approach combined
with multichannel quantum defect theory (MQDT), which
was presented in a previous paper [18], hereafter referred
to I.

The values of these parameters are such that only one-
photon resonant processes occur in each step of the excita-
tion. The first step is adequately described by a coherent
superposition of the three bound states within an adia-
batic approximation [19]. In most cases, the details of the
ionization process, which occurs at the second step of the
excitation of the system, can be inferred from the char-
acteristics of a single adiabatic state. Interference effects
in photoionization can be induced by the coherent exci-
tation occurring at the first step of the two-photon pro-
cess. Breakdown of the adiabatic approximation occurs
only through the spontaneous radiative decay.

The adiabatic model is presented in Section 2. The
atomic structure calculation is described in Section 3.
Section 4 presents the dynamical analysis. Interference ef-
fects between the two ionization paths are investigated in
Section 5.

2 Adiabatic model

2.1 Floquet Hamiltonian

We consider an atomic model consisting on two bound
states resonantly excited from the ground state by two
different lasers. The states with energy Ei, i = 0, 1, 2, are
denoted by φi(r), where r stands for all the coordinate
variables. This system is photoionized from both excited
states to a set of continua (Fig. 1) φEc(r), where c stands
for the ionic energy and quantum numbers defining a con-
tinuum. All these states are eigenvectors of a field-free
atomic Hamiltonian Hat. When the electromagnetic field
is treated as a classical field in the electric dipole approx-
imation,

H = Hat +
2∑
i=1

2Eiεi · d cos(ωit+ Φi) (1)

is the Hamiltonian of the system. Ei is the amplitude of
the classical field at the frequency ωi, εi the polarization of
the field, d the atomic dipole operator, Φi the initial phase
of the field i. For time-independent amplitudes, because
of the very fast oscillations at ωi frequencies it is more
convenient to work with the Floquet Hamiltonian HF =
HF0 + ID where (in the following, unless explicitly stated
otherwise, atomic units are used, ~ = 1)

HF0 = Hat − i
2∑
i=1

ωi
∂

∂θi

ID =
2∑
i=1

2Eiεi · d cos θi (2)
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operating on the enlarged Hilbert space obtained by the
productHat⊗L(θ1)⊗L(θ2) whereHat is the Hilbert space
related to the field-free atom and L(θi) is the Hilbert space
of square integrable periodic functions of θi with the scalar
product given by

∫ 2π

0
f∗(θ)g(θ)dθ/2π [20]. We consider

the function Ψ(r, θ1, θ2, t) solution of the equation:

i
∂Ψ(r, θ1, θ2, t)

∂t
= HFΨ(r, θ1, θ2, t) (3)

with the initial value at t = 0 ψat(r)⊗ein1θ1⊗ein2θ2 , where
ψat(r) is a eigenstate of Hat (n1, n2 integers). Transfor-
mation from the enlarged Hilbert space to the physical
space is obtained by using an operator Tt [21], which ap-
plied to a vector eimθi of the L(θi) space gives the scalar
eim(ωit+Φi). ψ(r, t) given by:

ψ(r, t) = TtΨ(r, θ1, θ2, t) (4)

is the solution of the Schrödinger equation

i
∂ψ(r, t)
∂t

= Hψ(r, t) (5)

which coincides with ψat(r)ei(n1Φ1+n2Φ2) at t = 0.
We introduce a projector Qat on the subspace defined

by the three atomic bound states defined above and its
extension QF = Qat⊗ 1⊗ 1 on the enlarged Hilbert space
following [22]. We have:

Qatψ(r, t) = TtQFΨ(r, θ1, θ2, t). (6)

We characterize the slow time-dependence of the field am-
plitudes by a time parameter τ instead of t. Both field am-
plitudes are replaced by f(τ)Ei with 0 ≤ f(τ) ≤ 1. The
whole pulse is split into small time intervals δt where the
field amplitudes can be considered as constant. Between
ti and ti+1, τ is chosen (arbitrarily) as ti. In each δt in-
terval resolvent operator techniques can be used [17]. An
effective Hamiltonian defined on the QF space [22]

He(z) = QFHFQF +QFD
†PF(z − PFHFPF)−1PFDQF

(7)

with D = f(τ)ID and PF = 1−QF allows to account for
all the states not included in this space. With this effec-
tive Hamiltonian it is possible to calculate, for instance
(omitting all the variables except t),

QFΨ(ti+1) =
1

2πi

∫
C+

dze−izδtQF(z −He(z))−1QFΨ(ti)

(8)

(C+ is the usual contour [17]) and

PFΨ(ti+1) =
1

2πi

∫
C+

dze−izδtPF(z − PFHFPF)−1

× PFDQF(z −He(z))−1QFΨ(ti) (9)

at ti+1 assuming that at ti the system is in QF space.

2.2 RWA approximation

We define a subset of three Floquet states |i〉 = φi(r) ⊗
eini1θ1 ⊗ eini2θ2 with quasi-energy Ei + ni1ω1 + ni2ω2, i =
0, 1, 2 and (ni1, ni2) = (n1, n2) for i = 0, (n1 − 1, n2)
for i = 1, (n1, n2 − 1) for i = 2, n1 and n2 being chosen
arbitrarily (the Floquet states being invariant through any
translation of the form n1ω1 +n2ω2, we choose n1 = n2 =
1). We assume that the system is prepared at t = 0 in one
(generally |0〉) or in a linear combination of these states.
The three states span a space on which the projection
operator Q is defined. Within the RWA approximation
we consider in equation (6) only the contributions of Q.
The contribution of the Q space to equation (7) involves
QHeQ+QHeQ

′(z−Q′HeQ
′)−1Q′HeQ whereQ′ = QF−Q.

If we omit the Q′D†PF couplings we obtain an effective
Hamiltonian (omitting the F index in HF)

Hef(z) = QHQ+QD†P (z − PHP )−1PDQ (10)

where P = PF +Q′ = 1−Q.
The first part H(1)

ef = QHQ of equation (10) corre-
sponds to the RWA approximation made on an atomic
system reduced to three bound states in the fields of two
lasers:

H
(1)
ef =

0 Ω1f(τ) Ω2f(τ)
Ω1f(τ) ∆1 0
Ω2f(τ) 0 ∆2

(11)

where ∆i = Ei − ωi −E0 (i = 1, 2) and

Ωi =
∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
cos θieiθi(φi(r)|2E iεi · d|φ0(r))

(12)

is the one-photon Rabi frequency.
The second part of equation (10) is a complex shift

matrix. It connects |i〉 (i = 0, 1, 2) through all the states
of the P space φj(r) ⊗ eim1θ1 ⊗ eim2θ2 with any bound or
free eigenstate φj(r) of Hat for any value of the integers
m1,m2. Matrix elements of QD†P are equal to

2∑
k=1

∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
cos θkei(m1−ni1)θ1+(m2−ni2)θ2

× (φi(r)|2E∗kεk · d|φj(r)). (13)

Only P states satisfying the usual selection rules for φj
and with m1 and m2 differing from ni1 and ni2 by at most
±1 are selected. All the couplings within the P space are
neglected. In all the calculations shown in the next sec-
tion, the shift matrix is evaluated in the pole approxi-
mation. In a crude approximation the pole is chosen at
z = Er + i0+ where Er = E0 + ω1 + ω2 is the quasi-
energy of the |0〉 initial state. Thus the imaginary part
of the effective Hamiltonian involves the matrix elements
D∗iEc

= 〈i|QD†P |Ec〉 between states |i〉 (i = 1, 2) and
|Ec〉 = φEc(r) ⊗ e−iθ1 ⊗ e−iθ2 evaluated at Er. The latter
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states correspond to the resonant continua reached at the
second step of the photoionization process (see Fig. 1).

The effective Hamiltonian is time-dependent through
the τ parameter. At fixed τ , the effective Hamiltonian can
be diagonalized: the eigenvalues have a real part and an
imaginary part which describes the decay (through pho-
toionization) of the system. The eigenvectors constitute a
set (actually a biorthogonal set since the effective Hamil-
tonian is no more hermitian) of states labeled Gamow
states [22].

When calculating QΨ it must be kept in mind that
at the beginning of each δt interval the system can be in
either Q or P space. QΨ(ti+1) is calculated from QΨ(ti)
using equation (8) and from PΨ(ti) using the transpose
of equation (9). PΨ(ti) is calculated from QΨ(ti−1) and
PΨ(ti−1) and so on. The contribution to QΨ(ti+1) from
QΨ(ti−1) via PΨ(ti) can be written as:

1
4π2

∫
C+

dze−izδt

∫
C′+

dz′e−iz′δtQ(z −Hef(ti))−1Q

× f(ti)f(ti−1)
d
dz
Σ(z)Q(z′ −Hef(ti−1))−1QΨ(ti−1)

(14)

where:

Σ(z) = QID†P (z − PHF0P )−1P IDQ. (15)

Deriving equation (14) we have put (Σ(z) −Σ(z′))/(z −
z′) ≈ dΣ(z)/dz. As it is well-known this term is vanish-
ingly small when the usual approximation of structureless
continuum is made, or equivalently in the pole approxi-
mation discussed above.

Anticipating the results of Section 3, the real part of
Hef is in general much larger than the imaginary part. The
first part of the effective Hamiltonian in equation (10)
is very large compared to the second part (by a factor
∼ 1000). Such a system is mainly driven by the H

(1)
ef

Hamiltonian which is related only to the evolution of the
three bound states driven by the two laser fields. Only one-
photon resonant processes occur in such a system. These
remarks justify the approximations introduced in this
section.

2.3 Adiabatic approximation

Consequently we can proceed in a different manner. We
consider in a first step only the H(1)

ef Hamiltonian (which
is hermitian). By diagonalizing it, we obtain at fixed τ a
set of eigenstates. The transformation matrix is unitary.
Each instantaneous eigenstate |ᾱ(τ)〉, with quasi-energy
εᾱ(τ) can be followed adiabatically step by step provided
that the usual conditions of the adiabatic approximation
(for a three level system) are fulfilled and that the phases
of the eigenstates are appropriately chosen [19]. These
eigenstates are no more degenerate. In a second step, the
coupling of each previous eigenstate with all the states
spanning P is accounted for in a similar manner as in

Section 2.2. The coupling with the continua |Ec〉 is very
small and the corresponding width is much smaller than
the gap between two eigenstates: the eigenstates do not
overlap. Each quasi-energy becomes complex

λᾱ = εᾱ +D†ᾱP (εᾱ − PHP )−1PDᾱ (16)

with D†ᾱ = 〈ᾱ|D†P where we have chosen z = εᾱ + i0+.
The second term of the left side of equation (16) has a
real part (shift) which is negligible compared to εᾱ and an
imaginary part (width) which is

γᾱ = 2π
∑

c

|D†ᾱEc=εᾱ
|2. (17)

All these parameters are time-dependent through the
τ parameter. The previous discussion on the step by
step evolution is still valid. As a result coupling with
the continua does not induce additional non-adiabatic
effects inasmuch as the continua are structureless. Ac-
tually Σ is generally energy dependent due to the pres-
ence of broad autoionizing states. These states intro-
duce additional poles, whose characteristics are related to
their positions and widths and modify slightly the defi-
nition of the poles which are related to the ᾱ states. In
the vicinity of εᾱ we retain only the first term of the
Taylor expansion, z−εᾱ−f(ti)2Σ(z) ≈ Ai(z−λ′ᾱ), where
Ai = 1 − f(ti)2dΣ(z)/dz. Solving equation (14), adding
the different contributions fromQΨ(tj) and PΨ(tj), j ≤ i,
we obtain

〈ᾱ|QΨ(ti+1) = A
− 1

2
i e−i

R ti+1
t0

λ′ᾱ(τ)dτA
− 1

2
0 〈ᾱ(t0)|QΨ(t0).

(18)

This equation is valid if the time interval δt is very large
compared to the inverse of the widths of the autoionizing
states. These are greater than 100 cm−1 and δt must be
greater than 50 fs. As it will be seen in Section 3.3, vari-
ations of Σ(z) can be ∼ 15% but the absolute value of
this term is very small and the correction factor will be
neglected.

In the adiabatic approximation we have:

QΨ(τ) =
∑
ᾱ

cᾱ|ᾱ(τ)〉e−i
R
τ
0 λᾱ(t)dt (19)

where cᾱ are coefficients which define the initial condi-
tions. With equation (6) in the RWA approximation, pop-
ulations and coherences related to the atomic states can
be obtained from equation (19).

Within the above introduced approximations, all the
increase δσc of the population of the continuum c between
ti and ti+1 is given by 〈Ec|PΨ(ti+1), when the system is
in QΨ(ti) at ti. Solving equation (9) in the pole approxi-
mation, we obtain

〈Ec|PΨ(ti+1)〉 =
∑
ᾱ

(e−iEcδt − e−iλᾱδt)
Ec − λᾱ
×DEcᾱ(ti)〈ᾱ|QΨ(ti)〉. (20)
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As the energy-dependence of the population in the con-
tinuum is not analyzed we have:

δσc =
∫

dEc |〈Ec|PΨ(ti+1)〉|2. (21)

Putting equation (20) in equation (21), performing the
integration and omitting the continuum thresholds effects,
we obtain in the limit δt→ 0

δσc = 2π

∣∣∣∣∣∑
ᾱ

D†ᾱEc=εᾱ
〈ᾱ|QΨ〉

∣∣∣∣∣
2

δt. (22)

In the RWA approximation δσc/δt represents the increase
in the total population of the field-free atomic continua
φEc(r) due to photoionization.

3 Atomic structure calculation

The dynamical treatment of the coherent ionization pro-
cess investigated by Wang and coworkers [13–15] involves
the three atomic bound states, the φ0 ≡ 6s2 1S0 ground
state and the two φ1 ≡ 6s6p 1P1 and φ2 ≡ 6s7p 1P1 in-
termediate states. As discussed in Section 2, this study is
carried out within the dipole and rotating wave approx-
imations. The dynamics is governed by atomic parame-
ters such as Rabi frequencies, Raman coupling between
intermediate states, spontaneous decay rates, couplings
between intermediate states and ionization continua and
quantities which are defined from the previous ones. These
atomic parameters are calculated by the eigenchannel R-
matrix method in combination with MQDT. This method
is briefly recalled in Section 3.1. Its extension required for
the calculation of the atomic parameters, involved in our
model, is outlined in Section 3.2, where all the parameters
of interest are tabulated. Then, in Section 3.3, we report
spectroscopic properties of barium, pertaining to the odd-
and even-parity barium spectra reached at each step of
the two-photon ionization processes.

3.1 Eigenchannel R-matrix method combined
with MQDT

As described in I, calculations in barium use a model
Hamiltonian for the two valence electrons outside a frozen
Ba2+ core. The interaction of each valence electron with
the core is described by a `-dependent potential contain-
ing screening, polarization and spin-orbit terms [23,24].
The interaction between the two valence electrons results
from the electrostatic term proportional to 1/r12 to which
a dielectronic polarization correction can eventually be
added [25]. Electron correlations are treated within a finite
spherical volume V of radius ro = 50 a.u., whose size was
chosen large enough to include the 6s7p 1P1 state. Two-
electron basis functions are antisymmetrized products of
one-electron orbitals of definite total angular momentum
J and parity π, the core orbitals 1s to 5p being disre-
garded.

As explained in I, since the 6s2 1S0 ground state and
the 6s6p and 6s7p 1P1 intermediate states, are confined
within the volume V , standard diagonalization of the two-
electron Hamiltonian matrices built on large sets of basis
functions, which have vanishing amplitudes on the sur-
face of the finite volume, provides the wavefunctions for
these levels. Note that the two-electron functions enclosed
within V account for various short-range electron correla-
tion, relaxation and polarization effects.

The description of the final even-parity states reached
by absorption from the ground state of the two photons ω1

and ω2 is obtained by using the eigenchannel jj-coupled
R-matrix approach in combination with MQDT [23]. Final
states lie above the Ba+ 5d5/2 threshold in the energy-
range close to E0 + $1 + $2 ≈ Er, where $j , j = 1 or
2, denotes the energy of the 6snp 1P1 states (n = 6 or 7)
with respect to the 6s2 1S0 ground state.

R-matrix variational calculations are performed for
J = 0e, 1e and 2e autoionizing states. The two-electron
basis functions introduced in the variational calculations
are chosen to treat the escape of a single electron from
the reaction volume into open or closed MQDT fragmen-
tation channels and to describe short-range effects which
take place within the volume V . The variational calcula-
tion gives the logarithmic derivatives of the escaping elec-
tron wavefunctions at the surface of the reaction volume
and the eigenchannel MQDT formulation [26,27] is used
to extend these wavefunctions outside the reaction volume
by imposing appropriate boundary conditions at large r.
To calculate the threshold-resolved ionization yields cor-
responding to the photoionization process in each channel
c ≡ {Nc`cjc ε

′`′j′ J}, we use the “incoming wave” nor-
malization condition associated with the atomic functions
|φ−c (E, J)) = |Nc`cjc ε

′`′j′J) [28].
The MQDT calculations performed above the Ba+

5d5/2 threshold, include only open channels converging to
the Ba+ 6s, 5d3/2 and 5d5/2 thresholds. There are three
even-parity jj-coupled open channels

(6s1/2εs1/2, 5d3/2εd3/2, 5d5/2εd5/2) for J = 0e,

eight

(6s1/2εs1/2, 6s1/2εd3/2, 5d3/2εs1/2, 5d3/2εd3/2, 5d3/2εd5/2,

5d5/2εd3/2, 5d5/2εd5/2, 5d5/2εg7/2) for J = 1e

and eleven

(6s1/2εd3/2, 6s1/2εd5/2, 5d3/2εs1/2, 5d3/2εd3/2, 5d3/2εd5/2,

5d3/2εg7/2, 5d5/2εs1/2, 5d5/2εd3/2, 5d5/2εd5/2,

5d5/2εg7/2, 5d5/2εg9/2) for J = 2e.

Although the 6p7p levels [29] lie in the same energy
range, no closed channel converging to the 6p thresh-
olds was introduced in the MQDT treatment. Indeed, for
ro = 50 a.u., the low-lying 6p7p levels fit entirely within
the R-matrix box. Treating these levels as the lowest mem-
bers of Rydberg series converging to the 6p thresholds, i.e.
as belonging to the 6pnp closed channels, induces strong
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Table 1. Values of atomic quantities determined in the length
gauge for the parallel and perpendicular linear polarizations
cases. The intensities of the visible laser I1 and of the UV laser
I2 are expressed in W cm−2, the Rabi frequencies in rad/s and
the coherent ionization rates or the spontaneous decay rates
in s−1.

polarization ‖ ⊥
Ω1/
√
I1 3.737 × 108 3.737 × 108

Ω2/
√
I2 −9.424× 107 9.424 × 107

Ω21/
√
I1 I2 −32.04 + i 0.34 54.30 − i 5.69

γcoh
21 (6s1/2)/

√
I1 I2 −1.26 − i 2.99 3.72 + i 1.60

γcoh
21 (5d3/2)/

√
I1 I2 0.41 + i 1.25 2.52− i 0.81

γcoh
21 (5d5/2)/

√
I1 I2 0.51 + i 1.74 −0.55− i 0.79

Ω11/I2 34.73 − i 18.97 56.79 − i 14.53
1
2γ

coh
1 (6s1/2)/I2 16.82 10.81

1
2γ

coh
1 (5d3/2)/I2 1.02 2.27

1
2γ

coh
1 (5d5/2)/I2 1.13 1.45

Ω11/I1 −128.45 −128.45

Ω22/I1 −37.76 − i 11.15 277.69 − i 31.45
1
2
γcoh

2 (6s1/2)/I1 3.88 21.86
1
2
γcoh

2 (5d3/2)/I1 2.29 7.58
1
2
γcoh

2 (5d5/2)/I1 4.98 2.01

Ω22/I2 31.29 − i 8.37 31.29 − i 8.37

γsp

6s6p→6s2
1.3× 108 1.3× 108

γsp

6s7p→6s2
5.3× 107 5.3× 107

γsp
6s7p 9.0× 107 9.0× 107

energy-variations in the MQDT parameters and numeri-
cal difficulties associated with the exponential growth of
wavefunctions in closed channels [23,30]. To avoid such
difficulties and obtain weakly energy-dependent MQDT
parameters, the 6p7p levels are treated, in this study, as
completely included within V rather than as members of
closed channels explicitly introduced in the MQDT treat-
ment [30]. We checked that there are no significant differ-
ences between the two treatments. When the resonances
are treated as enclosed within V , their weak coupling with
the open channels introduce shifts in their energy positions
smaller than their autoionization widths.

3.2 Calculation of atomic parameters

Table 1 presents a set of atomic parameters calculated
in the length gauge. These parameters are implied in the
definition of Hef(Er +i0+) introduced in equation (10) for
the parallel and perpendicular polarizations cases studied
in [13–15].

When pulse-envelopes are time-independent and the
laser-fields quantized, the “dressed-atom theory” [17]
allows to define, in a similar way as in Section 2.2, an
effective Hamiltonian. Expressions obtained in this way
and using Hef (defined in Eq. (10)) are formally equiv-
alent. Thus, calculation of atomic parameters proceeds

along the lines presented in detail in I. As discussed in I,
the calculation of atomic parameters can be performed
equivalently in the length or velocity gauge for the elec-
tric dipole operator. Moreover, in the present calculation,
the dielectronic polarization interaction, not introduced
in I, is accounted for.

The Rabi frequencies are defined in equation (12). Re-
calling that Ei(τ) = f(τ)

√
Ii where Ii is the intensity

of the laser i, Ωi is proportional to
√
Ii. The threshold-

resolved coherent ionization rates and the threshold-
resolved Raman couplings are defined by summing the
couplings D∗iErc

≡ D∗iEc
(E = Er) (Eq. (13)) over all the

continuum channels c ≡ {Nc`cjcε
′`′j′} associated with

the same Ba+ (Nc`cjc) ionization threshold.
The threshold-resolved ionization rate:

1
2
γcoh
i (Nc`cjc) =

∑
c

π|D∗iErc|
2 (23)

governs the population of the ionic state Ba+(Nc`cjc) by
ionization from the bound states φi(r), i = 1, 2. The
rate γcoh

i (Nc`cjc) is proportional to laser intensity Ik with
k 6= i. The summation of γcoh

i (Nc`cjc) over the Nc`cjc ion-
ization thresholds gives the total coherent ionization rate
γcoh
i .

The threshold-resolved two-photon coupling between
states |1〉 and |2〉 is:

γcoh
21 (Nc`cjc) =

∑
c

πD∗2ErcD1Erc. (24)

This quantity is proportional to
√
I1I2.

Calculation of these parameters necessitates the deter-
mination of the atomic resonant quantities:

D(Nc`cjc, n, n
′, J) =

∑
c

π(φ(6sn′p 1P1)||d||φ−c (Er, J))

× (φ−c (Er, J)||d||φ(6snp 1P1)) (25)

expressed in terms of the one-photon dipole matrix el-
ements of the operator d connecting the 6snp (or n′p)
1P1 (n, n′ = 6 or 7) atomic state to the final channels c
with J = 0e, 1e or 2e. In equations (24, 25), the summa-
tion over J depends on the polarizations of the lasers and
runs over J = 0e, 2e states for parallel linear polariza-
tions, and over J = 1e, 2e states for perpendicular linear
polarizations.

The light shifts Ωii(ωk) of the bound state φi due to
the laser with frequency ωk and the two-photon Raman
couplingΩ21 between the 6s6p 1P1 and 6s7p 1P1 states are
calculated from the second term in equation (10). Table 1
contains the value of the light shifts due to UV laser light
(proportional to I2) and that due to visible laser light
(proportional to I1) as well as the value of the two-photon
Raman coupling proportional to

√
I1I2 .

Some relationships between the imaginary part of the
complex quantities Ωij and the threshold-resolved quan-
tities calculated in terms of one-photon dipole matrix ele-
ments can be found in I.
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3.3 Spectroscopic properties of barium

3.3.1 Bound 6s2 1S0, 6s6p and 6s7p 1P1 levels

Correlation effects

Correct description of the low-lying bound states of bar-
ium cannot be obtained if correlation effects are disre-
garded [31]. Correlation effects arise from the interaction
either between the valence electrons or between core and
valence electrons. The valence-valence correlation is ac-
counted for, in the present study, by diagonalization of
two-electron Hamiltonian matrices built on functions en-
closed within the volume V . The core-valence correlations
are described in a semiempirical way by introducing in the
model Hamiltonian monoelectronic and dielectronic core-
polarization corrections [25]. The dielectronic interaction
reduces the binding energy of two-active-electron atoms.
The cut-off radii appearing in this term are adjusted by
fitting the energy of the ground level to the experimental
value [32,33].

The ionization energy of the Ba ground state obtained
by introducing only the monoelectronic polarization inter-
action, equal to −0.56163 a.u. is closer to the experimen-
tal value −0.55916 a.u. [34], than the value −0.52790 a.u.
obtained from the standard relativistic configuration in-
teraction method including only valence-valence corre-
lations [31]. This suggests that the model Hamiltonian
introduced in the present work accounts implicitly for
a part of the core-valence correlations. Complete treat-
ment of core-valence and valence-valence correlations
effects, using configuration-interaction and many-body-
perturbation-theory gives the value −0.56065 a.u. [31]
in very good agreement with experimental data. The
present model overestimates the energy differences be-
tween the 1P1 and 3P1 levels in the 6snp configurations
by ∼ 1180 cm−1 for n = 6 and ∼ 220 cm−1 for n = 7. Im-
proved results for the singlet-triplet energy intervals are
obtained, when the dielectronic core-polarization interac-
tion is introduced (∼ 610 cm−1 and 50 cm−1 respectively).

Correlation effects are also responsible for the pertur-
bation of the 6snp 1P1 and 3P1 Rydberg series by low
members of the 5dnp and 5dnf Rydberg series, espe-
cially by the 5d6p 1P1 perturber at 28 554 cm−1 [35]. The
weights of the two-electron basis functions in the wave-
functions of the 6s6p and 6s7p 1P1 levels are very differ-
ent leading, as discussed below, to large differences in the
partial photoionization cross-sections associated with the
6s6p or 6s7p intermediate state.

The mixing between the 6snp levels and the 5dnf se-
ries is responsible for a weak contribution of the 5dnf
two-electron basis functions in the wavefunctions of the
6snp 1P1 levels (0.03% for n = 6 and 0.92% for n = 7).
These very small weights are difficult to be determined
precisely. Being associated with large values for the dipole
matrix elements between the 5dnf and 5dεg channels,
they explain the large excitation of final channels, mainly
from the 6s7p level.

To describe more precisely the lowest bound states of
barium, a complete treatment of the correlation effects

should be performed. Recently, progress has been achieved
by combining the many-body perturbation theory with
the configuration interaction method ([31], and references
therein). However, to our knowledge, these methods have
not been applied to the study of multiphoton ionization
processes.

Spontaneous decay rates

The spontaneous radiative rates for the 6snp 1P1

levels, which decay towards lower-lying, even parity lev-
els with J = 0e, 1e or 2e, are calculated by assuming
that the bound levels are enclosed within the reaction
volume. Some of these values are reported in Table 1.
The 6s6p level which decays mainly towards the ground
level with a rate γsp(6s6p 1P1 → 6s2), has a total de-
cay rate γsp(6s6p 1P1) ∼ γsp(6s6p 1P1 → 6s2). The
total decay rate γsp(6s7p 1P1) of the 6s7p level arises
from the radiative transition probabilities γsp(6s7p 1P1 →
6s2) = 5.3 × 107 s−1, γsp(6s7p 1P1 → 6s5d 1D2) =
3.3× 107 s−1, γsp(6s7p 1P1 → 6s7s 1S0) = 3.6× 106 s−1

and γsp(6s7p 1P1 → 6s6d 1D2) = 1.3× 106 s−1.
The radiative lifetimes 1/γsp calculated for the

6s6p 1P1 and 6s7p 1P1 levels are in good agreement with
the experimental values 8.37± 0.14 ns and 13.2± 0.4 ns
respectively [36]. The significant value for the decay rate
6s7p 1P1 → 6s7s 1S0 is responsible for the fourth peak at
∼ 0.52 eV observed by Wang and Elliott [13] in their time-
of-flight spectra. This peak corresponds to this radiative
cascade followed by photoionization of the 6s7s 1S0 level
by the visible laser ω1, as indicated in Figure 1.

3.3.2 Autoionizing 6p7p levels

Autoionizing resonances

Even-parity 6p7p autoionizing levels of barium located
above the 5d5/2 threshold have been investigated by
Camus et al. [29], using a two-step pulsed laser excita-
tion through the 5d6p 1Po

1 or 6s7p 1,3Po levels and an
optogalvanic detection. The assignments in LS coupling
obtained by using the Slater-Condon theory, the observed
energy positions and the autoionization widths given by
these authors are compared with R-matrix calculations in
Table 2. Camus et al. [29] did not observe the 1D2 and 3D2

levels and reported predicted energies which are given in
Table 2.

The values calculated in the present work correspond
to the energy positions and widths at half-maximum for
the resonances occurring in the partial photoionization
spectra 6s7p 1P1 → J = 0e, 1e, 2e. The calculations
were performed with or without the dielectronic core-
polarization correction. Both sets of values reproduce well
the experimental data, those determined by including the
dielectronic contribution being generally in better agree-
ment. For the 3D2 and 1D2 resonances the calculated
widths are very broad and the lines which are less intense
than the others, are almost degenerate with the intense
3D1 and 3S1 resonances respectively. This explains why
the 3D2 and 1D2 resonances have not been observed.
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Table 2. Experimental and theoretical values of the energy-
positions and autoionization widths for the 6p7p resonances.
The values in the column denoted as “exp” are those reported
by Camus et al. [29]. The assignments in LS coupling were
obtained by using the Slater-Condon theory. The energies cor-
respond either to observations or predictions (a) obtained by
Camus et al. [29]. The widths are obtained from the excita-
tion profiles from the 6s7p 1P1 or 3P1 levels (b). The R-matrix
calculation (1) does not include the dielectronic polarization
term, while calculation (2) includes this correction. The the-
oretical widths correspond to values at half-maximum for the
resonances showing up in the partial photoionization spectra
6s7p 1P1 → J = 0e, 1e, 2e.

exp theory (1) theory (2)

E Γ E Γ E Γ

cm−1 cm−1 cm−1 cm−1 cm−1 cm−1

3P0 51491.51 7.4b 51563 3.5 51544 10
1S0 54803.00 34 54890 52 54879 23
1P1 50383.00 25 50405 28 50357 23
3D1 51113.00 25 51142 21 51108 16
3P1 52158.00 10 52200 11 52180 8
3S1 53336.00 4 53411 4 53339 5
3D2 51201.9a 51150 93 51115 75
3P2 52583.00 40b 52634 57 52623 46
1D2 53427.6a 5337 324 53358 263

Threshold-resolved ionization rates from the 6snp 1P1

states (n = 6 and n = 7)

The threshold-resolved coherent ionization rates
(Eq. (23)) are linear combinations of the resonant
quantities D(Nc`cjc, n, n, J) summed over the final Je

states (Eq. (25)).
The energy dependence of D for J = 1e and J = 2e

final states, excited from the intermediate states 6s6p and
6s7p are presented in Figure 2. The studied energy-range
includes the 6p7p 1P1, 3D1 and 3D2 autoionizing reso-
nances.

At the energies of the autoionizing resonances, the par-
tial, threshold-resolved ionization rates from the 6s7p 1P1

level towards J = 1e (Fig. 2b) or J = 2e (Fig. 2d) states
are larger by a factor ∼ 20 than those associated with the
6s6p 1P1 level (Figs. 2a and 2c). The profiles associated
with final J = 2e states strongly depend on the inter-
mediate state 6s6p or 6s7p from which final states are
populated. From the 6s6p level, there is an almost equal
probability to excite the continuum states, especially the
6sεdjJ = 2e ones, and the autoionizing state 6p7p 3D2

which results in Fano profiles similar to dispersion curves.
On the opposite, from the 6s7p level, there is a high prob-
ability to reach the autoionizing state, which leads to very
intense and nearly Lorentzian-like profiles. This strong dif-
ference in the ionization behavior of the 6s6p and 6s7p
levels is a result of different electron correlations in the
intermediate states.
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Fig. 2. Energy dependence of the threshold-resolved resonant
quantities D(Nc`cjc, n, n, J) (Eq. (25)) for J = 1e and J =
2e final states excited from the intermediate 6s6p and 6s7p
levels. (a): 6s6p 1P1 → J = 1e; (b): 6s7p 1P1 → J = 1e; (c):
6s6p 1P1 → J = 2e; (d): 6s7p 1P1 → J = 2e. 6s1/2 threshold:
full line. 5d3/2 threshold: dashed line. 5d5/2 threshold: dot-
dashed line. The arrows mark the resonant energy Er = E0 +
~$1 +~$2 ≈ 50 607 cm−1, reached by absorption from the 6s2

ground state of the two photons ω1 and ω2.

The resonant energy Er is located approximately half-
way between the two J = 1e resonances (Figs. 2a and 2b),
and about 550 cm−1 below the broad 6p7p 3D2 reso-
nance (Figs. 2c and 2d). At Er, the threshold-resolved
D quantities associated with the different Ba+ thresholds
are much smaller than those at the resonance peaks, ex-
cept for the excitation of J = 2e final states from the
6s6p 1P state. The probability for ionization at E = Er

from the 6s7p 1P1 state towards J = 1e final states is
very large compared to the probabilities for other pro-
cesses (Fig. 2b). In the energy range of Figure 2, the main
decay of J = 0e, J = 1e and J = 2e states generally popu-
lates 6sεdj continuum states. But, the values of branching
ratios corresponding to the decay of these states to the
6s1/2, 5d3/2 and 5d5/2 thresholds, calculated at either the
resonant energy Er, or at the autoionizing resonance peak
energies are very different. Indeed, the 6p7p resonances are
responsible for strong energy dependence in the branching
ratios, mainly for final J = 2e states, since Er is at the
bottom of the broad 6p7p 3D2 resonance (see Fig. 2d). The
precise determination of these energy-dependent branch-
ing ratios, either in between the two J = 1e resonances or
at the bottom of the broad J = 2e is a difficult problem.
Note that because the 6p7p 3P0 level is outside the energy-
range shown in Figure 2, the D quantities associated with
the final J = 0e states vary slowly with energy.

Accounting for the experimental laser intensities I1 =
8.15 MW cm−2 and I2 = 1 MW cm−2 and for perpen-
dicular linear polarizations, the ionization rate from the
6s7p state is ∼ 18 times larger than the corresponding rate
from the 6s6p state and populates mainly the 6s1/2 ionic
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Table 3. Values of the threshold-resolved coherent ionization
rates (s−1) from the 6s6p (i = 1) and 6s7p (i = 2) intermediate
states for linear parallel polarizations. The laser intensities I1
and I2 are expressed in W cm−2. All the values are calculated
at the same final energy E0 +~$1 +~$2. All values except (a)
are calculated in the length gauge. (a, b): Without dielectronic
correction; (c): with dielectronic correction; (d): 5dnf → 5dεg
excitations are disregarded.

(a) (b) (c) (d)
1
2 γ

coh
1 /I2

6s1/2 15.6 17.0 16.8 17.0

5d3/2 0.91 1.05 1.02 1.05

5d5/2 1.02 1.15 1.13 1.18
1
2 γ

coh
2 /I1

6s1/2 3.96 3.96 3.88 4.02

5d3/2 2.30 1.89 2.29 1.69

5d5/2 4.93 4.53 4.98 3.98

state. There is a very predominant path in the ionization
process. For parallel linear polarizations, the situation is
quite different. There is no prevalent path in the ionization
process to the 6s1/2 ionic state.

Table 3 reports values of the threshold-resolved coher-
ent ionization rates from the 6s6p and 6s7p intermedi-
ate states, obtained from different theoretical models for
linear parallel polarizations. In these calculations, the di-
electronic polarization interaction is introduced or disre-
garded, and either the length or the velocity form of the
dipole operator is used.

As evident by comparing results (a) and (b), length
and velocity formulations for the dipole transition op-
erator lead to similar results. Although the dielectronic
polarization interaction modifies the energy-positions of
the 6p7p autoionizing resonances, this interaction changes
only slightly the partial autoionization rates in the energy-
range outside the resonances (compare columns (b) and
(c)). As expected, a decrease of the ionization rates
from the 6s7p state towards the Ba+ 5dj ionic states
is observed, when the 5dnf → 5dεg excitation is dis-
regarded, leading to a reversal in the branching ratio
γcoh

2 (6s1/2)/γcoh
2 (5d5/2) (column (d)). However, let us re-

call that accounting precisely for the contribution of this
excitation is very difficult, the components 5dnf in the
wavefunctions of the 6snp states being very small and sen-
sitive to the treatment of correlation effects.

In summary, we estimate to about 20% the uncer-
tainty in the theoretical branching ratios associated with
the present model. It arises either from the choice of the
gauge used to calculate electric dipole transitions or from
the description of correlation effects. The energy variation
of the partial coherent ionization rates can be analyzed in
an energy-range extending ±20 cm−1 around the resonant
energy. For linear parallel polarizations, the variation does
not exceed 1 to 2%, except for γcoh

2 (6s1/2) which increases
by 8%. For linear perpendicular polarizations, larger

variations are observed for γcoh
2 (6s1/2) and γcoh

2 (5d3/2)
which decrease respectively by 15% and 22%.

Several recent theoretical and experimental photoion-
ization studies of the excited states of barium revealed
significant depolarization effects due to the hyperfine in-
teraction [37–40]. In these studies, two laser beams with
parallel polarizations populate the intermediate state from
the ground state and ionize it, respectively. The resolution
of the first laser is insufficient to separate the different hy-
perfine sublevels of the intermediate state and the ionizing
laser pulse is delayed with respect to the first one. During
this period the weak hyperfine interaction causes a pre-
cession of J and I, the nuclear momentum, about their
resultant F, depolarizing the system. This breakdown of
the selection rules on J and MJ modifies the relative in-
tensities of the resonances and leads to the appearance of
“electronic forbidden lines”. An erroneous assignment of
the J values of the 6p7p resonances, observed in a two-step
ionization process via the 6s6p 1P1 intermediate state, us-
ing various combinations of the polarizations of the laser
beams [41], may be due to the decay of alignment caused
by the hyperfine interaction in the odd isotopes present
in natural barium. In the limit of complete depolariza-
tion due to the hyperfine interaction in the odd isotopes
of natural barium, the total cross-section is given by the
combination of the partial cross-sections σJ towards final
states J = 0e, 1e and 2e [37–40]:

σ = 2.728σJ=0e + 0.136σJ=1e + 1.173σJ=2e.

Ionization towards J = 1e final states being stronger than
the other ones, the contribution of J = 1e term will mod-
ify significantly the ionization yields obtained with parallel
polarizations. For strictly parallel polarizations, in the ab-
sence of hyperfine structure, the coefficients occurring in
the total cross-section are respectively equal to 3, 0, 6/5.

3.3.3 Discussion

In most of the theoretical calculations presented in the fol-
lowing sections we neglect the spatial dependence of the
intensities of the lasers and we assume a temporal depen-
dence f(t), identical for both lasers, with

∫∞
0
f2(t)dt = τp,

where τp denotes the pulse duration. From numerical tests
we have verified that the calculated ion yields in the differ-
ent ionization channels Ba+ 6s1/2, 5d3/2 and 5d5/2 do not
depend significantly on the exact form of the f function.

In the experiment, it is necessary to measure the to-
tal energy of the laser pulse, the pulse duration and
the beam size to determine the intensity of each laser
[13–15,42]. The pulse duration, estimated using a photo-
diode detector and a fast oscilloscope, is τp = 15×10−9 s.
The beam radius w, defined as the distance from the beam
axis, measured by a beam profiler, at which the intensity is
decreased to 1/e2 of its maximum, is w = 0.67× 10−3 m.
For an ideal Gaussian beam, it corresponds to an effec-
tive beam area πw2/2 [42]. The experimental intensities
have been determined to within a factor of two. The ra-
tio of the UV/visible intensities was also determined with



214 The European Physical Journal D

a similar uncertainty. For these reasons comparison of ex-
perimental and theoretical spectra is only approximate.
Accounting for the measured laser pulse energies, we use
for the laser peak intensities I1 = 8.15× 106 W cm−2 and
I2 = 1× 106 W cm−2.

From Table 1, for such intensities, the light shifts, less
than 10−3 cm−1, can be neglected. The one-photon Rabi
frequency Ω1 ≈ 5.6 cm−1 strongly couples |0〉 and |1〉. By
comparison, the coupling between |0〉 and |2〉 represented
by the one-photon Rabi frequency Ω2 ≈ 0.5 cm−1 can be
considered as a perturbation, while the coupling between
|1〉 and |2〉, due to the two-photon Raman coupling Ω21 <
0.5× 10−3 cm−1, is negligible.

The values of coherent ionization lifetimes 1/γcoh
i and

those of the radiative lifetimes τ sp
i can be compared with

the pulse duration τp. For parallel polarizations we have
in ns:

1
γcoh

1

= 26 > τp = 15 > τ sp
2 = 11 > τ sp

1 = 8 >
1
γcoh

2

= 5.

The pulse duration corresponds to 8× 106 oscillations for
the visible laser and 15× 106 for the UV laser.

The visible and UV lasers can induce ionization to-
wards incoherent channels, processes which have not
been considered above. One-photon ionization from the
6s7p 1P1 state by the UV laser light populates the Ba+

6s1/2, 5d3/2,5/2 and 6p1/2,3/2 ionic levels. Evaluation of
this ionization rate, for parallel polarizations, leads to
γinc

2,UV ≈ 9I2 ≈ 9 × 106 s−1, ten times smaller than the
radiative decay rate of this level γsp

2 = 9 × 107 s−1.
For the two-photon ionization process from the 6s6p 1P1

state by the visible laser populating the Ba+ 6s1/2 and
5d3/2,5/2 ionic levels, we obtain an ionization rate of
γinc

1, 2vis ≈ 2.6 × 10−10 I2
1 ≈ 1.7 × 104 s−1, which is com-

pletely negligible.

4 Model calculation

4.1 General formulation in terms of adiabatic states

As seen by the calculated parameters, the two steps of
the photoionization process are very different and the as-
sumptions introduced in Section 2 seem justified. The de-
pendence of the atomic parameters on the energy of the
continuum states reached by the photoionization process
is not negligible because of the presence of the autoioniz-
ing states 6p7p. However, this energy dependence is not
taken into account because with the atomic parameters
given in Table 1 and the laser intensities involved in the
experiment, it was shown in Section 2.3 that this effect is
negligible. Thus we are dealing with a three state model
and put Er ≈ εᾱ in equations (16) or (17).

Non-adiabatic transition between adiabatic states
would be due to the matrix elements 〈δᾱ/δt|β̄〉 (with
α 6= β). These transitions are negligible when [19]∣∣∣∣〈δᾱδt |β̄〉

∣∣∣∣2 � |εᾱ − εβ̄|2. (26)

For a two level system (0 and 1) in the RWA approxima-
tion, a sufficient condition reads |Ω1δf/δt| � 4Ω2

1f
2(t) +

∆2
1. In the worst case, when ∆1 � Ω1 it corresponds to

Ω1τm � 1, where τm is the rise-time of the pulse, with
Ω1 = 0.1 cm−1, τm � 0.5 ns. For such a two-level system
the large range of validity of the adiabatic approximation
is known as the Rosen-Zener conjecture [43]. For a three
or more level system Landau-Zener transitions could oc-
cur between two adiabatic states. This case is treated be-
low. The validity of the adiabatic approximation can be
verified by comparing the results to solutions of the equiv-
alent Bloch equations which can be written from the Hef

Hamiltonian described in Section 2.
At ∆1, ∆2 6= 0 the system prepared at t = 0 in the

Floquet state |0〉 follows the adiabatic Floquet state |0̄〉
which is connected to |0〉 at t = 0. The populations of
the different atomic bound states and the coherences are
given at each instant t in the RWA and adiabatic approx-
imations by

σij(t) = 〈i|0̄〉〈0̄|j〉σ0̄0̄(t) (27)

where

σ0̄0̄(t) = exp
(
−
∫ t

0

dt′γ0̄(t′)
)
. (28)

Between t and t + δt we can calculate the change in the
population of each continuum by using equations (22, 6)
and developing D†

0̄Erc

δσc

δt
= 2π

∣∣∣∣∣
2∑
i=1

D∗iErc〈0̄|i〉
∣∣∣∣∣
2

σ0̄0̄(t). (29)

Summing over the continua corresponding to the same
threshold Nc, `c, jc, we obtain the increases of the thresh-
old resolved ion yields as in [16]:

δσ(Nc, `c, jc)
δt

=
2∑
i=1

γcoh
i (Nc, `c, jc)σii(t)

+ 2Re(γcoh
21 (Nc, `c, jc)σ12(t)). (30)

At∆1 or∆2 = 0 we can describe the evolution as a sudden
transition at t = 0 which populates two or three adiabatic
states, followed by an adiabatic evolution in these states.

Numerical calculations will be performed with sym-
metric or asymmetric pulse shapes f(t), numerically con-
structed to satisfy the condition that f(t) vanishes exactly
at the beginning and the end of the pulse. Usual analytic
shape pulses are not used in order to avoid discontinuities
at t = 0. However, it is fruitful to consider a simple shape,
which will be called “quasi-constant” pulse. If the rise and
fall-off times are short compared to the total duration of
the pulse, but sufficiently long to allow for the adiabatic
approximation to be valid, we can omit the contributions
at the beginning and the end of the pulse. Thus, analytical
formulae for the populations can be obtained. Of course,
different pulse shape give different results, but it has been



E. Luc-Koenig et al.: Coherent excitation and ionization in Ba 215

verified by extended tests that the results are not signifi-
cantly different, provided the area of the pulse is the same.

For a “quasi-constant” pulse the population of the con-
tinuum c is given after the pulse by

σc = 2π

∣∣∣∣∣
2∑
i=1

D∗iErc〈0̄|i〉
∣∣∣∣∣
2

(1− e−γ0̄τp)/γ0̄, (31)

all terms being taken at the peak of the pulse (as will be
done in the following sections when time variation is not
explicitly written). There are two factors in this equation.
The first one is the rate of transition to the continua from
the |0̄〉 adiabatic state as given by the Fermi golden rule. It
is similar to the formulas in [12,13] (and reduces to them
when detunings are much larger than the Rabi frequen-
cies). This factor contains interference terms. Interference
effects are strongly related to the coherent excitation at
the first step of the process, which is described by the adi-
abatic approximation. It must be noticed that a summa-
tion over different continua with the same threshold must
be performed when threshold resolved populations of the
continua are calculated. Thus, the presence of multiple
continuum channels with the same threshold necessarily
smears out the contrast in whatever interference pattern
may be present in the spectra.

The second factor describes the depletion of the popu-
lation of the adiabatic state |0̄〉 and can be more or less im-
portant because we are dealing with laser intensities such
that γ0̄τp ∼ 1. The depletion term contributes to enlarge
the widths of the photoelectron peaks versus the detun-
ing as it can be seen by a two-state model. Disregarding
the state 2 (very detuned from resonance) equation (31)
reduces to

σc ≈ 2π
|D∗1Erc

|2

γ1
(1− e−γ1 sin2 θτp) (32)

where γ1 = 2π
∑

c |D∗1Erc
|2 and sin2 θ = (1/2)(1 −

|∆1|/
√
∆2

1 + 4Ω2
1) and is valid at ∆1 = 0. The FWHM

of the variation of σc versus ∆1 varies from∞ to 2Ω1/
√

3
as γ1τp varies from ∞ to 0.

Perturbative case Ω1 � Ω2

With the laser intensities used to interpret the experiment,
one has Ω1 � Ω2 � Ω21. This situation is similar to the
one studied in calcium [16].

The time dependence of the quasi-energies, positions
Re(λᾱ) = εᾱ and ionization widths −Im(λᾱ) = γᾱ/2,
for the three adiabatic states are reported in Figure 3, for
∆2 = −0.7 cm−1 and for ∆1 = −5 cm−1 (Figs. 3a and
3b) or +5 cm−1 (Figs. 3c and 3d), in the perpendicular
polarization case. The strong coupling Ω1 is responsible
for the energy-gap between the two adiabatic states |0̄〉
and |1̄〉. This corresponds to the dynamical Stark effect.

Considering first the two-state system |0〉 and |1〉 cou-
pled through Ω1f(t), one defines two eigenstates |+〉 and
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Fig. 3. Time dependence (in ns) of the energy positions (in
cm−1) and ionization rates (in s−1) for the three adiabatic
states in the perpendicular polarizations case for the laser in-
tensities I1 = 8.15 MW cm−2 and I2 = 1 MW cm−2 and for the
detuning ∆2 = −0.7 cm−1; (a) and (b): position and ionization
rate for ∆1 = −5 cm−1; (c) and (d): position and ionization
rate for ∆1 = +5 cm−1; |0̄〉: full line; |1̄〉: dashed line. |2̄〉:
dot-dashed line. The time dependence of the pulse shape is
approximately given by the dot-dashed curve in inset (b).

|−〉 with the quasi-energies:

E±(t) =
1
2

[∆1 ± δ(t)] with

δ(t) =
√
∆2

1 + 4Ω2
1f

2(t). (33)

For Ω1 ≥ 0, the corresponding eigenvectors are given by:

|+〉 = + cos θ(t)|0〉+ sin θ(t)|1〉
|−〉 = − sin θ(t)|0〉+ cos θ(t)|1〉, (34)

with tan[2θ(t)] = −2Ω1f(t)/∆1, and 0 ≤ θ < π/2. For
∆1 > 0 (resp. < 0), the adiabatic state |0′〉 connected at
t = 0 with |0〉 is identical to |−〉 (resp. |+〉).

In a second step, |2〉 and the weak coupling Ω2 are
accounted for. Because the eigenstates |+〉 and |−〉 are
strongly shifted, we are dealing with either a one- (|0̄′〉) or
a two-state (|0̄′〉 and |2〉) system depending on the signs
of ∆1 and ∆2. In the following, we consider only the case
∆2 < 0.

For ∆1 < 0, |2〉 is treated to the second order of per-
turbation theory and one has:

|0̄〉 = |0̄′〉+
Ω2f(t) cos θ(t)
E+(t)−∆2

|2〉. (35)

For ∆1 > 0, the Stark-shifted |0̄′〉 can cross |2〉 and an an-
ticrossing occurs in the two-state system (Fig. 3c). Such a
situation appears, when the detunings satisfy the follow-
ing condition:

0 ≤ ∆1 ≤ ∆1m with ∆1m =
Ω2

1 −∆2
2

|∆2|
· (36)
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To the first order, the wave function for the |0̄〉 adiabatic
state is given by:

|0̄〉 = cosα(t)|−〉 − sign(Ω̄(t)) sinα(t)|2〉, (37)

where Ω̄(t) = −Ω2f(t) sin θ(t). The mixing-angle α(t),
with 0 ≤ α(t) < π/2, is defined by tan[2α(t)] =
−2|Ω̄(t)|/δ̄(t), in terms of the energy gap:

δ̄(t) = −1
2

[∆1 − δ(t)] +∆2. (38)

The validity of the adiabatic approximation depends on
the intensity of the Landau-Zener transition during the
short time that the anticrossing occurs. The condition
|dα(t)/dt| �

√
δ̄2(t) + 4Ω̄2(t) around the time tLZ, de-

fined by δ̄(tLZ) = 0, is satisfied for:∣∣∣∣dδ̄(t)dt

∣∣∣∣
t=tLZ

1
8|Ω̄(t = tLZ)|2 � 1. (39)

This is the condition for a negligible transition from an
adiabatic state to another one. This condition reduces to:

Ω3
1

4Ω2
2

1
∆1 −∆2

1√
∆2(∆2 −∆1)

∣∣∣∣dfdt
∣∣∣∣� 1. (40)

At ∆1 ∼ 0, going from one side of the avoided crossing
to the other one ∆δ̄ ∼ 4|Ω̄(tLZ)| or ∆f ∼ 2|Ω2∆2|/Ω2

1 .
Condition (40) is satisfied if ∆t � Ω1/2|Ω2∆2|. Ac-
counting for the considered field-intensity conditions and
for the calculated atomic parameters Ω1/Ω2 ∼ 10 and
∆t � 0.025 ns for ∆2 ∼ 1 cm−1. This condition is easily
satisfied for most pulse shapes except at very small ∆2.
Except for pulses with quasi-instantaneous rise time, we
have the important conclusion that the adiabatic condi-
tions are valid independently of the pulse shape.

We consider the case where |D∗1Erc
| � |D∗2Erc

|, or
equivalently from equation (23), γcoh

1 � γcoh
2 , which gen-

erally corresponds to the experimental situation or to the
calcium case [16]. The photoelectron yield to continuum c
is very different depending on the sign of∆1, with ∆2 kept
fixed. Indeed, for ∆1 < 0, we deduced from equation (35):

|D†
0̄Erc

(t)| ∼
∣∣∣∣D∗2Erc

Ω2f
2(t) cos θ(t)

E+(t)−∆2
+D∗1Ercf(t) sin θ(t)

∣∣∣∣
� |D∗2Ercf(t)|. (41)

During the pulse, the adiabatic state |0̄〉 has a very small
width, as shown in Figure 3b, and the coherent ionization
rate of the system is itself very small.

For 0 ≤ ∆1 ≤ ∆1m, from equation (37), it can be
shown that:

|D†
0̄Erc

(t)| ∼ |D∗2Erc sinα(t)

+D∗1Erc cosα(t) cos θ(t)|f(t). (42)

Outside the range t ∼ tLZ, | sinα(t)| ∼ 1, and |D†
0̄Erc

(t)| ∼
|D∗2Erc

| the adiabatic state |0̄〉 gets a large width (Fig. 3d).

The coherent ionization rate is large. Disregarding the
depletion term in equation (31), this explains the very
asymmetrical profiles observed in the ionization yields (see
Sect. 4.2). The effect of the depletion term, when it is sig-
nificant, is an enhancement of the asymmetry.

4.2 Comparison with experimental results

In this section, we present theoretical two-color photoion-
ization spectra obtained in the adiabatic approximation,
disregarding the spontaneous decay. The ion yields (prob-
ability for a ground state atom to end up in a specific ionic
state after the excitation) into the three Ba+ 6s1/2, 5d3/2

and 5d5/2 ionic channels are drawn, as a function of the
detuning ∆1, for fixed values of the detunings ∆2, and are
compared to the experimental spectra [15].

Spectra obtained for perpendicular (Fig. 4) and par-
allel (Fig. 5) linear polarizations are very similar. Except
for ∆2 = −9.6 cm−1 (Fig. 4a), they present asymmet-
ric shapes, with a strong suppression of the ionization
for ∆1 < 0 and an enhancement for ∆1 > 0. The cho-
sen laser intensities I1 = 8.15 × 106 W cm−2 and I2 =
1× 106 W cm−2 correspond to the perturbative case dis-
cussed in the previous section. There exists an anticrossing
between |0̄′〉 and |2〉 states for positive ∆1 (Eq. (36)) sat-
isfying 0 < ∆1 < 6.8 (or 45, 320) cm−1 for ∆2 = −3.2 (or
−0.7, −0.1) cm−1 respectively in Figures 4b and 5a (or
Figs. 4c and 5b; Fig. 4d). The limited extension of this
∆1-range can be seen in Figures 4b and 5a where the ion
yields decreases for ∆1 > 7 cm−1. This anticrossing does
not exist for ∆2 = −9.6 cm−1 and the ionization yields
remain small even for positive ∆1-values.

In perpendicular polarizations, the total width in the
adiabatic model is large, (γcoh

2 τp ∼ 4). The depletion
term is such that the system is quickly and totally ion-
ized (Figs. 4b, 4c and 4d). Only partial ionization occurs
with parallel polarizations where γcoh

2 τp ∼ 1.3 (Figs. 5a
and 5b).

For large∆2-value, (Fig. 4a), the system can be consid-
ered in first approximation as a two-state system |0〉, |1〉.
For the 6s1/2 threshold which is prevalently populated, a
symmetrical profile is obtained. The total ionization yield
determined by the ionization through the 6s6p state is
smaller than that calculated for other ∆2 values in the
range ∆1 > 0, but is similar to the values obtained in the
range ∆1 < 0.

For perpendicular polarizations (Fig. 4), the calculated
spectra are in rather good agreement with the experimen-
tal ones. The observed relative ionization yields with re-
spect to the different ionization thresholds are relatively
well reproduced, except for the 5d3/2 ion yield which is
a little too large. For positive ∆1 detunings, these rel-
ative yields do not vary significantly with ∆1, as long
as the adiabatic state |0̄〉 is almost identical to |2〉 dur-
ing a long period. These ratios are mainly determined
by the threshold-resolved ionization rates γcoh

2 (Nc`cjc).
For negative ∆1-values, more significant changes are ob-
served pointing to a larger contribution from both ioniza-
tion paths. As discussed in Section 3.3.2, for perpendicular
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Fig. 4. Partial ionization yields calculated in the adiabatic
approximation (a, b, c, d) for the perpendicular polarization
case compared to the experiment (e, f, g, h) [15] drawn as
function of the detuning ∆1. The theoretical laser intensities
are I1 = 8.15 MW cm−2 and I2 = 1 MW cm−2. 6s1/2 ion yield:
full line. 5d3/2 ion yield: dashed line. 5d5/2 ion yield: dot-dashed
line. (a, e): ∆2 = −9.6 cm−1, (b, f): ∆2 = −3.2 cm−1, (c, g):
∆2 = −0.7 cm−1, (d): ∆2 = −0.1 cm−1 (h): ∆2 ' 0 cm−1.

polarizations, threshold resolved ionization rates from the
state 6s7p prevail by a factor ∼ 18 the corresponding rates
from the state 6s6p. Consequently, the relative ionization
yields obtained for positive ∆1 are mainly determined by
the former pathway, in which the J = 1e final states are
predominantly excited. As it can be shown in Figure 2b,
the branching ratios for ionization 6s7p → J = 1e have
a relatively weak energy-dependence in the energy range
reached by absorption of the two photons. As a result,
relative ionization yields for perpendicular linear polar-
izations can be reliably calculated.

The calculations do not reproduce the relative ion
yields observed with parallel polarizations (Fig. 5). In this
case, the threshold-resolved ionization rates from 6s7p into
the 5d3/2,5/2 ionic states are larger than the ones from 6s6p
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Fig. 5. Partial ionization yields calculated in the adiabatic
approximation for the parallel polarization case (a, b) and
compared to the experiment (c, d) [15], drawn as function
of the detuning ∆1. The theoretical laser intensities are I1 =
8.15 MW cm−2 and I2 = 1 MW cm−2. 6s1/2 ion yield: full line.
5d3/2 ion yield: dashed line. 5d5/2 ion yield: dot-dashed line.
(a, c): ∆2 = −3.2 cm−1. (b, d): ∆2 = −0.7 cm−1.

by a factor greater than 16, but the ratio of the threshold-
resolved ionization rates into the 6s1/2 ionic state from
the 6s7p and 6s6p is ∼ 2. In this latter case, the compe-
tition between the two pathways is stronger than in the
perpendicular polarizations case. Furthermore, in ioniza-
tion from the 6s7p, the contributions of final states J = 0e

and J = 2e are comparable. As discussed in Section 3.3.2,
the calculated threshold-resolved ionization rates cannot
be accurate to more than 20%. However, this inaccuracy
can explain only a part of the discrepancies of the exper-
imental branching ratios with the ones calculated in the
dynamical treatment.

4.3 Discussion

In this subsection we discuss a number of modifications to
the three-state adiabatic model presented above. In par-
ticular, we discuss the modifications in the relative values
of the ionic yields, when effects resulting from the spon-
taneous decay of the excited states and the spatial distri-
bution of the laser intensities are accounted for or when
polarization decay due to the hyperfine structure arises.

4.3.1 Spontaneous emission effects

We start with the Bloch equations resulting from the effec-
tive Hamiltonian, and we treat the spontaneous emission
from the excited states in a phenomenological way through
the introduction of the usual decay matrix Γ in the Bloch
equations. We consider only the effect of the spontaneous
emission inside the set of the three bound states and the
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Fig. 6. Influence of the spontaneous decay rates for perpen-
dicular (a) and parallel (b) polarizations. ∆2 = −3.2 cm−1,
I1 = 8.15 MW cm−2 and I2 = 1 MW cm−2. Bloch equations
including the spontaneous decay: full lines. Adiabatic approx-
imation: dashed lines.

emission by cascade to other excited states. The evolution
of the density matrix in the RWA approximation reads

dσ
dt

= −i(Hefσ − σH∗ef)

+
2∑
i=1

−1
2

(Λ†iΛiσ + σΛ†iΛi) + ΛiσΛ
†
i (43)

with the Lindblad operators Λi =
√
γsp
i |0〉〈i| i = 1, 2. We

consider the decay due to the spontaneous emission to-
gether with the decay due to the photoionization and we
diagonalize Hef − (i/2)

∑
i Λ
†
iΛi [17]. The rates of sponta-

neous emission are very weak compared to the one-photon
Rabi frequencies. As a result the eigenvectors are not dif-
ferent from the eigenvectors of Hef . They are the adiabatic
eigenvectors calculated in Section 4.1. In the diagonalized
basis equation (43) becomes:

dσᾱβ̄
dt

= −i(λᾱ − λ∗β̄)σᾱβ̄

+
2∑
i=1

γsp
i

∑
µ̄ν̄

〈ᾱ|0〉〈i|µ̄〉σµ̄ν̄〈ν̄|i〉〈0|β̄〉 (44)

where Re(λᾱ) is the quasi-energy of the adiabatic state
|ᾱ〉 and 2Im(λ∗ᾱ) = γᾱ +

∑
i γ

sp
i |〈ᾱ|i〉|2 its total width

due to spontaneous emission and photoionization. It can
be noticed that the part of the width due to spontaneous
emission is dynamically varying and depends on the rel-
ative positions of the adiabatic states. The last term of
equation (44) acts as a source term [44]. Its effect is to
create some population in different adiabatic states. Thus,
the adiabatic approximation is partially broken.

The ionization spectra calculated by introducing this
non-adiabatic process in the Bloch equations are reported
in Figure 6. For perpendicular polarizations (Fig. 6a), only
the ∆1-range close to zero is weakly modified, the ion-
ization rate γcoh

2 being larger by a factor of 10 than the
spontaneous decay rate γsp

6s7p→6s2 (see Tab. 1). On the
contrary, for parallel polarizations the spontaneous de-
cay rate is comparable to the ionization rate. Ionization

−20 −10 0 10 20
∆1 (cm

−1
)

0.00

0.05

0.10

0.15

0.20

Fig. 7. Influence of the spontaneous decay at the anticrossing
between the |1̄′〉 and |2〉 calculated in the perpendicular polar-
ization case for ∆2 = −9.6 cm−1, I1 = 8.15 MW cm−2 and
I2 = 1 MW cm−2. 6s1/2 ionic yield: full line. 5d3/2 ionic yield:
doted line. 5d5/2 ionic yield: dot-dashed line.

yields are reduced because of the increase of the depletion
term. Source terms have an opposite effect. There is a
competition between ionization and spontaneous emission
in the decay from the 6s7p state. Significant changes are
observed (Fig. 6b) leading to a modification of the relative
yields for the different ionic states.

Dramatic changes in the ionization spectra are found
in the calculated perpendicular polarization spectra when
Ω1 � Ω2, ∆1 and ∆2 < 0 because under these con-
ditions a small variation in the populations of the adi-
abatic states can appear amplified in the populations
of the continua. For ∆2 = −9.6 cm−1 (Fig. 7) a sec-
ondary maximum occurs in the ionization yields, for ∆1

in the range −9.6 to −6.2 cm−1, i.e. when the condi-
tion for crossing of |−〉 and |2〉 is satisfied. This peak
is a manifestation of the effects of the source term in
equation (44), as it can be seen by assuming a more sim-
plified model, in which |D∗1Erc

| � |D∗2Erc
| and the pulse

is “quasi-constant”. The adiabatic state |0̄〉 corresponds
to |+〉 in equation (34). To zeroth order approximation
there is no population in the c continuum. Because to this
order σ22 = 0, the spontaneous emission from the bound
state φ2 can be neglected. The other adiabatic states are
given approximately by a mixing of |2〉 and |−〉 with a
mixing coefficient α such as tan 2α = −2|Ω2 sin θ|/∆
where ∆ = ∆2 − (∆1 −

√
∆2

1 + 4Ω2
1)/2 can vanish. With

equations (27, 28, 44) we obtain, to first order, the popu-
lations of the adiabatic states:

σ1̄1̄ ≈ γsp
1 cos2 α sin4 θτp

σ2̄2̄ ≈ γsp
1 sin2 α sin4 θτp (45)

assuming weak depletion terms. The adiabatic states are
coupled to the resonant continua by D∗2Erc

sinα for |1̄〉
and D∗2Erc

cosα for |2̄〉. Assuming that |Ω2 sin θ|τp � 1,
coherence terms can be neglected and the population
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Fig. 8. Influence of the spatial distribution of the intensities of
the laser lights on the ionic yields 6s1/2 full line, 5d3/2 dotted
line and 5d5/2 dot-dashed line for Io1 = 16.3 MW cm−2 and
Io2 = 2 MW cm−2. (a): smoothing of the additional maxima
due to the spontaneous decay at the anticrossing |−〉-|2〉 for
perpendicular polarizations for ∆2 = −9.6 cm−1. (b): Modifi-
cation of the relative ionic yields for parallel polarizations for
∆2 = −3.2 cm−1.

of the continuum c, to first order, is:

σc ≈
π

4
γsp

1 |D∗2Erc|
2 sin2 2α sin4 θτ2

p (46)

whose dependence on ∆1 is approximately given by the
dependence of

sin2 2α =
4Ω2

2 sin2 θ

∆2 + 4Ω2
2 sin2 θ

,

roughly a Lorentzian centered at the anticrossing and with
a FWHM given by 2|Ω2 sin θ/(d∆/d∆1)| evaluated at the
value of ∆1 which gives ∆ = 0.

As stated in Section 3.3 the 6s7p 1P level can also de-
cay to other levels such as 6s7s 1S0. We have performed
calculations taking into account the different decay chan-
nels. The net effect is the fourth photoelectron peak in [13]
without noticeable modifications in the previously dis-
cussed ionization yields.

In conclusion, when spontaneous emission is accounted
for, the agreement between calculated and experimental
spectra in the case of parallel polarizations is slightly im-
proved. However, in the perpendicular polarizations case
it may induce an additional structure in the yields versus
∆1, which has not been observed experimentally.

4.3.2 Spatial distribution of the intensities of the laser
beams

The spatial distribution of the intensities of the two laser
beams is not known experimentally. Nevertheless, the
dependence of the spectra on the spatial intensity dis-
tribution can be assessed from Figure 8. In this calcu-
lation we assume a perfect spatial overlap of the beams
and a cylindrical symmetry for the intensities for both
lasers, with the same ideal Gaussian distribution Ii(r) =
Ioi exp(−2r2/w2), where w = 0.67 mm is the experimen-
tal beam radius [42]. To compare spectra corresponding
to the same total laser pulse energy, the peak intensity on

the beam axis Io is taken equal to twice the value used
when the spatial distribution of the laser intensity is as-
sumed to be uniform on an area πw2. Figure 8a presents
the ionic yields obtained for perpendicular polarizations
and for ∆2 = −9.6 cm−1. By comparing Figures 4a, 7
and 8a, it is evident that the additional maximum due
to spontaneous decay is less prominent when the spatial
distribution of intensities is introduced in the calculation.
Indeed, the outer wings of the distribution contributing
with the largest weight (∝ r) to the ion yields, correspond
to the lowest laser intensities. As a result, the dynam-
ical Stark shifts are weaker for states of atoms located
in the corresponding zones. The additional maximum in
the ionic yields is shifted towards ∆1-values smaller and
closer to ∆2, as r increases. These two effects, decrease of
the intensity and shift, contribute to the smoothing of the
additional structure in the ionic yields.

Figure 8b presents the spectra calculated with parallel
polarizations for ∆2 = −3.2 cm−1 and is to be compared
with Figure 5a. For these spectra, where complete ioniza-
tion of the system is not obtained even for positive ∆1-
values, accounting for the spatial energy-distribution of
the laser intensities results in the decrease of the branching
ratio 5d5/2/6s1/2. Indeed, decreasing the laser intensities
reduces the contribution of the ionization path through
the 6s7p state, a process associated with a branching ra-
tio favoring the 5d5/2 ionic state, and consequently gives
a greater weight to ionization via the 6s6p state.

In conclusion, accounting for the spatial distribution of
the laser intensities modifies slightly the ionic yields, with
contributions generally of the same magnitude as the ones
arising from the spontaneous decay. The most significant
contribution is the smoothing of the additional peak re-
sulting from spontaneous decay effects.

4.3.3 Hyperfine structure effects

Isotopes 135,137Ba with nuclear spin I = 3/2 account for
18% of natural barium. Hyperfine splitting of the inter-
mediate states (for the 6s6p 1P1 level it is in the range
100−500 MHz [45]) introduces some depolarization. This
depolarization arises in a context different from the one
briefly introduced at the end of Section 3.3.2. The effect
of the hyperfine structure can be completely taken into
account in a purely adiabatic approach.

The hyperfine coupling is introduced through an ef-
fective operator AhfIJ added to the Floquet Hamiltonian
(Eq. (2)). We proceed in the same way as in Section 2
defining a basis |i;MJi,MIi〉 (i = 0, 1, 2) in the Floquet
space, MJi and MIi being the projections of J and I on
the z-axis. On this basis we construct an effective Hamil-
tonian and obtain adiabatic states by diagonalizing it.
Since hyperfine-split thresholds are not resolved it is not
necessary to introduce hyperfine effects in the continua.
Selection rules on J and MJ break down. Whatever the
polarizations of the fields are, the adiabatic states are
coupled (to a different degree) to all the continua with
J = 0, 1, 2. Taking Ahf ∼ 4× 10−3 cm−1 for 6s6p 1P1 and
Ahf/2 for 6s7p 1P1 we have at all intensities Ahf � Ω2, Ω1.
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Hyperfine coupling introduces only a small perturbation
to the adiabatic states defined in the previous sections.
Due to their large coupling to the continua J = 1 this
small effect can be enhanced when calculating the popu-
lations of the continua in the case of parallel polarizations
for Ω2 � Ω1 as well as when there are weakly avoided
crossings (see Sect. 4.1). Actually, this effect is only ap-
preciable in the case of parallel polarizations.

Let us examine this case in more detail. The subspaces
with different MF = MJ +MI are completely decoupled
and can be studied separately. Only the states |i;MJi =
0,MIi = MF 〉 (denoted |i〉 in the following i = 0, 1, 2) are
coupled by the field and this coupling is the same as in
the absence of the hyperfine structure. The |i〉 states are
coupled to the continua J = 0 and 2, but the other states
of the Floquet basis with MJi 6= 0 are coupled to J = 1
and 2 continua.

We treat the hyperfine coupling as a weak perturba-
tion. To zeroth order only |i〉 are involved and we obtain
coupled states whose components have been calculated in
Section 2.3. Consider the one which is connected to |0〉
when ∆2 < 0 and ∆1 > 0. It is formally identical to the
one given by equation (37) and we denote it |0′′〉 because
it is no more an adiabatic state, being weakly coupled to
|2;MJ2 = ±1,MI2 = MF − MJ2〉 and quasi-degenerate
with them as it can be seen in the insets of Figure 9.
Let us consider the central part of the pulse far from the
avoided crossings. If δ̄ � 2|Ω2 sin θ|, with δ̄ and θ given by
equations (33, 38) at the peak of the pulse, |0′′〉 is given
to the second order by

|0′′〉 = |2〉+
Ω2 cos θ

δ̄
(cos θ|1〉 − sin θ|0〉). (47)

The adiabatic state |0̄〉 which is connected to |0〉 at t = 0 is
obtained by diagonalizing the matrix constructed on the
basis spanned by |0′′〉 and |2;MJ2 = ±1,MI2 = MF −
MJ2〉:

〈2;MJ2MI2 |AhfIJ|2;M ′J2
M ′I2〉

+
Ω2

2 sin2 θ

δ̄
δMJ20δM′J2

0. (48)

It differs from the hyperfine Hamiltonian by the last term,
denotedA, which is responsible for the deviations from the
usual hyperfine mixing coefficients. Actually A� Ahf and
the adiabatic state |0̄〉 is close to the state calculated when
the hyperfine coupling is neglected. The ratio A/Ahf gives
approximately the mixing with the other states. When
MF = 3/2 this mixing coefficient φ is

2φ ≈ tan 2φ = 2
√

6Ahf/(2A− Ahf). (49)

Consequently |0̄〉 which is coupled to the continua J =
0 and J = 2 as in the absence of hyperfine coupling is
also coupled to the continua J = 1 by a term ∼ φD†J=1

0̄Erc
;

φ acts as a depolarization term. The point is that it is
varying with ∆1 at ∆2 fixed. At ∆1 ∼ 0 for Ω1 = 5 cm−1,
Ω2 = 0.4 cm−1 and ∆2 = −0.7 cm−1, φ ∼ 0.15 rad.
Increasing ∆1, φ is rapidly vanishing. The depolarization
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Fig. 9. Partial ionization yields in parallel polarizations for
the isotope of Ba with nuclear spin I = 3/2, hyperfine con-
stant Ahf = 125 MHz for 6s6p and Ahf/2 for 6s7p. Same laser
intensities as in Figure 4. ∆2 = −0.7 cm−1. Solid lines corre-
spond to the adiabatic approximation. Dot-dashed lines to a
calculation with spontaneous emission included. In the insets
relative positions of the adiabatic states with MF = 3/2 are
given versus time at ∆1 = +0.5 cm−1. The time scale is from
0 to 50 ns for the top inset, the bottom inset corresponds to
t ≈ tLZ (vertical scale ×10). The labels α = 0, 1, 2 correspond
to the adiabatic states |ᾱ〉, which are connected at t = 0 with
|i;MJ = 0,MI = 3/2〉 i = 0, 1, 2 (compare with Fig. 3c). 1′, 2′

correspond to the adiabatic states which are connected to the
states with MJ = 1.

effect is localized near∆1 ∼ 0 as it can be seen in Figure 9.
A peak appears for the 6s1/2 ionic yield. It can also be
noticed that the increase of population in the continua
due to the depolarization can be cancelled by the effect of
the depletion term, which increases too, as it is apparent
in the 5d5/2 ionic yields.

We have verified that the adiabatic approximation is
still valid when there are more than one weakly avoided
crossings. The effect of the spontaneous emission can be
calculated by adding to equation (43) Λ terms correspond-
ing to emission of photons with arbitrary polarization. All
the subspaces MF should be considered together. How-
ever, as seen in equation (44), the source terms depend
strongly on the populations σii which are very small for
MJi 6= 0 and we can omit spontaneous emission from these
terms. Thus, we can calculate the effects of spontaneous
emission separately on the different MF subspaces. These
effects are not qualitatively different from the ones calcu-
lated in Section 4.3.1. However, the peak at ∆1 ∼ 0 is now
smaller (Fig. 9).

It is necessary to emphasize, that hyperfine structure
effects involve only the 6s7p level, the sub-levels 6s6p with
MJ 6= 0 being spectators (see the level denoted 1’ in the
upper inset of Fig. 9).

In the experiment using natural barium any additional
structure in the spectra due to the hyperfine interaction
is difficult to be observed, since most barium atoms have
nuclear spin I = 0 and therefore no hyperfine structure.
Nevertheless, since the very weak hyperfine interaction
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results in modifications in the ionic yields it is reason-
able to assume that any additional interaction, even a
very weak one (due to residual static fields, for instance),
when taken into account in the adiabatic model calcu-
lation could result in non negligible modifications of the
spectra and could explain the peak at ∆1 ∼ 0 in 6s1/2

ionic yields (Figs. 5c and 5d).

4.3.4 Conclusion

Accounting for various additional processes in the model
can only partially improve the results obtained in Sec-
tion 4.2. These improvements affect the branching ratios
around ∆1 ∼ 0, but, in general, the dynamical stud-
ies show that the different additional processes cannot
strongly modify the branching ratios in the full detuning
range.

Phase and intensity fluctuations of the laser fields may
also play a role in the interpretation of the experimental
spectra. Phase fluctuations, which break the adiabatic ap-
proximation and consequently could smear out the asym-
metric ionization profiles, have been accounted for in [16]
using the phase diffusion model [46]. Lastly, in the ex-
periment [13–15], density effects modifying the ionization
profiles have been observed, but these effects are com-
pletely disregarded in the present treatment. A recent re-
assessment of the experimental data has shown that these
effects were not as important as initially found [42].

5 Interference effects
between the two ionization pathways

In the excitation scheme of Figure 1, interference ef-
fects are expected to occur between the two pathways
coupling the ground state to the same final continuum
states. The corresponding interference term can be seen in
equation (29).

5.1 Analysis of Elliott’s experiment

To assess the importance of interference effects in the ion-
ization yields, we have calculated the spectra disregarding
the cross terms which arise by developing equation (29)
or, equivalently, neglecting the cross term involving γcoh

21

in equation (30). The results obtained for perpendicular
polarizations and for ∆2 = −3.2 cm−1 are compared in
Figure 10 with the spectra obtained from the complete
calculation. Small destructive or constructive interference
effects depending on the sign of ∆1 are observed. The laser
intensities used in the experiment, correspond to the per-
turbative situation (Ω1 � Ω2) for which during the whole
pulse duration the adiabatic state |0̄〉 does not include
significant mixing of the unperturbed |0〉 and |1〉 states if
∆1 > 0. From equations (41) or (42), the existence of de-
structive interference effects cannot be ruled out, but, in
order to be observable they have to occur for not too large
detunings and for experimental conditions corresponding
to large ionization rates.
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Fig. 10. Contribution of interference effects between the two
ionizing paths. Ionic yields obtained for perpendicular polar-
izations for I1 = 8.15 MW cm−2, I2 = 1 MW cm−2 and
∆2 = −3.2 cm−1. Complete calculation: dashed line. Calcu-
lation disregarding the interference term: full line.

5.2 “Strong mixing case”

To observe non-negligible interference effects, it is neces-
sary that |1〉 and |2〉 are simultaneously significantly popu-
lated. Such a situation can occur when the Rabi couplings
Ω1 and Ω2 are of the same order of magnitude. In this
“strong mixing case”, there is no well-defined anticrossing
between the three adiabatic states. Due to the strong mix-
ing, the three adiabatic states have ionization rates of the
same order of magnitude throughout the pulse duration,
and this mixing continues to exist for large variations in
the detunings. Then, the pronounced asymmetry in the
ionic yields observed in the perturbative case by varying
the sign of∆1, is expected to be flattened. We have numer-
ically verified that the adiabatic approximation remains
valid for the “strong mixing case”. The particular situa-
tion, where ∆1 and ∆2 can be treated as perturbations
compared to Ω1 and Ω2 has analytical solution, valid at
times satisfying |Ωif(t)| � |∆i′ | (i and i′ = 1 or 2).

Treating ∆1 and ∆2 to first order of perturbation the-
ory, the three adiabatic states have the energies:

E0(t) = ∆1

[
Ω2

Ω

]2

+∆2

[
Ω1

Ω

]2

E±1(t) = ±Ωf(t) +
1
2

(
∆1

[
Ω1

Ω

]2

+∆2

[
Ω2

Ω

]2
)

(50)

with Ω2 = Ω2
1 +Ω2

2 , These states have the widths due to
the ionization:

Γ± =
1
2

∑
c

[Ω2D2Erc +Ω1D1Erc]2f(t)2/Ω2,

Γ0 =
∑

c

[Ω2D1Erc −Ω1D2Erc]2f(t)2/Ω2. (51)

The |0̄〉 adiabatic state, is identical to the state q = 0
for ∆1∆2 < 0. For ∆1∆2 > 0, it is identical to the state
q = −1 (resp. q = 1) if ∆1 > 0 (resp. ∆1 < 0). From
these formulas, it is obvious that the interference effects
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Fig. 11. Strong mixing case Ω1 ∼ Ω2 showing significant in-
terference effects between the two ionization pathways. I1 =
8.15 MW cm−2, I2 = 81.5 MW cm−2 and ∆2 = −0.7 cm−1

for perpendicular polarizations. (a): Ionic yields 6s1/2 full line,
5d3/2 dashed line and 5d5/2 dot-dashed line obtained from the
complete calculation, compared to the ionic yields obtained by
disregarding the interference term long-dashed line. (b): Con-
tribution of the interference term to the 6s1/2 ion yield – total
term: full line – contribution of J = 1e final states: dashed line
– contribution of J = 2e final states: dot-dashed line.

have constructive or destructive contributions depending
on the sign of ∆1 for fixed ∆2.

Figure 11 presents the ionic yields, for the “strong
mixing case” for perpendicular polarizations and for I1 =
8.15 MW cm−2 and I2 = 81.5 MW cm−2, i.e., for Rabi fre-
quenciesΩ1 ∼ 5.6 cm−1 andΩ2 ∼ 4.5 cm−1. The detuning
∆2 is fixed to −0.7 cm−1. The ionic yields obtained by dis-
regarding the interference terms are compared to the total
yields in Figure 11a. These high laser intensities result in
total ionization of the system at the end of the pulse, even
for negative ∆1. Therefore, the ionic yields depend weakly
on ∆1. The interference effects have significant contribu-
tions to the spectra; the 6s1/2 ion yield has an almost
smooth ∆1 dependence over the entire tuning range, while
the 5d3/2 and 5d5/2 ion yields exhibit enhanced asymme-
try. In Figure 11b, the contribution of the total interfer-
ence term to the 6s1/2 ion yields is drawn, as well as,
independently, the contribution of the partial interference
terms associated with final states J = 1e or J = 2e. The
partial contributions are of opposite sign, which demon-
strates that the incoherent summation of the interference
terms associated with different continuum channels results
in smoothing out the interference patterns associated with
the different channels. As a result, in the case of multi-
ple continua the contribution of interference effects to the
spectra may appear insignificant.

Strong interference effects are probably difficult to ob-
serve experimentally. Indeed, the “strong mixing” con-
dition |Ω1| ∼ |Ω2| implies I2/I1 ∼ 16 with the calcu-
lated atomic parameters. The intensity I2 of the UV laser
light, obtained by frequency doubling of a visible laser
light, is always smaller than 2–3 MW cm−2 [12,15], which
corresponds to Ω2 ∼ 0.7−0.9 cm−1. Thus the I1-value
associated with the “strong mixing” condition should be
0.13–0.19 MW cm−2. These intensities correspond to par-
tial ionization of the system and therefore are associated

with low ionic yields. Variations of the ionic yields are
expected to occur in narrow ranges for the detuning, of
the order of magnitude of Ωi, i.e. only a few cm−1. These
stringent conditions may be difficult to meet in an exper-
iment.

In this “strong coupling” situation the two ionization
pathways through the 6s6p and 6s7p intermediate atomic
states become more symmetric inasmuch as their coupling
with the ground state are nearly equal. As a result the time
evolution of the population in the excited states are simi-
lar. However, this situation necessitates to decrease the in-
tensity ratio I1/I2 and, consequently, will favor ionization
from the unperturbed state 6s6p compared to that from
the state 6s7p, differentiating the two ionization paths.

6 Conclusion

We have studied the even-parity autoionizing states of bar-
ium in the energy-range of the 6p7p resonances. Particular
attention has been paid to the partial ionization rates from
the 6s6p 1P1 and 6s7p 1P1 states towards the three ionic
states 6s1/2, 5d3/2 and 5d5/2. We have shown that in the
energy range experimentally investigated, ionization from
the 6s7p 1P1 state towards J = 1e continuum states is
prevalent and favors the production of Ba+ 6s1/2 ionic
state.

We have also investigated the possibility of controlling
the branching ratios for photoionization of atomic bar-
ium, using the experimental scheme proposed by Elliott
and coworkers. This two-color process was assumed to ex-
ploit phase-independent interference between two distinct
two-photon ionization pathways, each of which is reso-
nantly enhanced by an intermediate discrete state. The
main characteristics of the ion yields can be analyzed in
the adiabatic approximation, following adiabatically dur-
ing the pulse the evolution of the |0̄〉 Floquet state ob-
tained in a three-state model including the ground state
and the two resonant intermediate states. The contribu-
tions of additional effects, i.e. spontaneous decay rates,
intensity distribution of the laser intensities and hyper-
fine interaction, have been discussed.

We have demonstrated that the strong asymmetry ob-
served in the spectra and persisting in a very large range of
detunings when ∆1 is varied, is not related to interference
effects which play a minor role. It is the manifestation of
a coherent excitation of the intermediate states through a
single adiabatic state under special conditions. These con-
ditions correspond to a perturbative case where the Rabi
coupling 6s2−6s6p is prevailing (Ω1 � Ω2), and to an ion-
ization process more favorable through the unperturbed
6s7p intermediate state. During the pulse, when the inten-
sity I1(t) of the visible laser increases, the near-degeneracy
between the |0〉 and |1〉 states is removed. The adiabatic
Floquet state |0̄〉 follows the state which undergoes an
anticrossing with the |2〉 state associated to the rapidly
photoionizing 6s7p atomic state. Increasing the peak value
of I1 will promote the asymmetry, Ω1 and γcoh

2 increas-
ing simultaneously. However, the ion yields become then
predominantly determined by a single ionization path.
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The branching ratios are fixed, given by the threshold re-
solved ionization rates γcoh

2 (Nc, `c, jc). In such a situation
the ability to control the photoionization products is min-
imized.

We have analyzed the influence of the relative polar-
izations of the laser beams. We have shown that for per-
pendicular polarizations, due to the large ionization rate
from the 6s7p state towards the J = 1e continuum states
total ionization of the system is observed at the end of
the pulse for positive ∆1. This results in ion yields and
branching ratios not very sensitive to the experimental
parameters and to the approximations introduced in the
theoretical model. For parallel polarizations partial ioniza-
tion occurs resulting in more significant variations in the
ionic yields and branching ratios, although ionic yields are
then weaker. They are determined by three contributions:
ionization through the 6s6p or through the 6s7p and weak
interference between the two ionization paths.

Investigating the importance of interference effects, we
have shown that these effects are only observable in the
“strong mixing case” Ω1 ∼ Ω2. However, even if notice-
able interference effects appear in a particular ionization
channel, interference effects are partially smeared out in
the spectra owing to the large number of final channels.
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